加密的历程:
从 按规则替换 -> 对称加密 -> 非对称加密 的过程,看到加密技术的不断进化。
破解方式:
按规则替换:根据频率破解。
对称加密:截获密钥。
非对称加密:???
非对称加密:
非对称加密又称公开密钥加密。
公开密钥加密(英语:public-key cryptography,又译为公开密钥加密),也称为非对称加密(asymmetric cryptography),一种密码学算法类型,在这种密码学方法中,需要一对密钥,一是个私人密钥,另一个则是公开密钥。这两个密钥是数学相关,用某用户密钥加密后所得的信息,只能用该用户的解密密钥才能解密。如果知道了其中一个,并不能计算出另外一个。因此如果公开了一对密钥中的一个,并不会危害到另外一个的秘密性质。称公开的密钥为公钥;不公开的密钥为私钥。
–wiki
在非对称加密中使用的主要算法有:RSA、Elgamal、背包算法、Rabin、D-H、ECC(椭圆曲线加密算法)等。
优点
与对称密钥加密相比,优点在于无需共享的通用密钥,解密的私钥不发往任何用户。即使公钥在网上被截获,如果没有与其匹配的私钥,也无法解密,所截获的公钥是没有任何用处的。
过程
假设两个用户A向B发送信息。B的公钥为c,对应私钥(也是属于B的)为d,明文为x.
- A用公钥对明文进行加密形成密文c(x),然后传输密文;
- B收到密文,用私钥对密文进行解密d(c(x)),得到要通信的明文x。
B向A发送信息反之。
现在主要解释RSA加密原理。
原理
互质关系
如果两个正整数,除了1以外,没有其他公因子,我们就称这两个数是互质关系(coprime)。比如,15和32没有公因子,所以它们是互质关系。这说明,不是质数也可以构成互质关系。
有以上,不难得到以下结论:
- 任意两个质数构成互质关系,比如13和61。
- 一个数是质数,另一个数只要不是前者的倍数,两者就构成互质关系,比如3和10。
- 如果两个数之中,较大的那个数是质数,则两者构成互质关系,比如97和57。
- 1和任意一个自然数是都是互质关系,比如1和99。
- p是大于1的整数,则p和p-1构成互质关系,比如57和56。
- p是大于1的奇数,则p和p-2构成互质关系,比如17和15。
欧拉函数
请思考一下问题:
任意给定正整数n,请问在小于等于n的正整数之中,有多少个与n构成互质关系?(比如,在1到8之中,有多少个数与8构成互质关系?)
–阮一峰
计算这个值的方法就叫做欧拉函数,以φ(n)表示。在1到8之中,与8形成互质关系的是1、3、5、7,所以 φ(n) = 4。
φ(n) 的计算方法并不复杂,但是为了得到最后那个公式,需要一步步讨论。
第一种情况
如果n=1,则 φ(1) = 1 。因为1与任何数(包括自身)都构成互质关系。
第二种情况
如果n是质数,则 φ(n)=n-1 。因为质数与小于它的每一个数,都构成互质关系。比如5与1、2、3、4都构成互质关系。
第三种情况
如果n是质数的某一个次方,即 n = p^k (p为质数,k为大于等于1的整数),则
$$\phi(p^k)=p^k-p^{k-1}$$
比如 φ(8) = φ(2^3) =2^3 - 2^2 = 8 -4 = 4。
这是因为只有当一个数不包含质数p,才可能与n互质。而包含质数p的数一共有p^(k-1)个,即1×p、2×p、3×p、…、p^(k-1)×p,把它们去除,剩下的就是与n互质的数。
上面的式子还可以写成下面的形式:
$$\phi(p^k)=p^k-p^{k-1}=p^k(1-\frac{1}{p})$$
可以看出,上面的第二种情况是 k=1 时的特例。
第四种情况
如果n可以分解成两个互质的整数之积,
$$n=p_1p_2$$
则
$$\phi(n)=\phi(p_1p_2)=\phi(p_1)\phi(p_2)$$
即积的欧拉函数等于各个因子的欧拉函数之积。比如,*φ(56)=φ(8×7)=φ(8)×φ(7)=4×6=24。
这一条的证明要用到”中国剩余定理”,这里就不展开了,只简单说一下思路:如果a与p1互质(a<p1),b与p2互质(b<p2),c与p1p2互质(c<p1p2),则c与数对 (a,b) 是一一对应关系。由于a的值有φ(p1)种可能,b的值有φ(p2)种可能,则数对 (a,b) 有φ(p1)φ(p2)种可能,而c的值有φ(p1p2)种可能,所以φ(p1p2)就等于φ(p1)φ(p2)。
第五种情况
待续…
—未完待续:http://www.ruanyifeng.com/blog/2013/06/rsa_algorithm_part_one.html